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1 Signals and Spectra
Modulation
e Allows small antenna
e Can match with channel prop-
erties (e.g. optical fibre)
e Mixer/Filter/Amplifiers
typically better for high fre-

are

quencies

e 0.01< £

7. < 0.1 in a practical
c

system

e A large bandwidth requires a
large carrier frequency

Main Lobe BW of signal

duration T
1

Ty
Duration x Bandwidth > %RMS
T
Real Signal
[M(=f)| = [M(f)]
LM(—f) = —£ZM(f)

Fourier Series

oo
s(t) = Z cpel2rnfot

n—=—

oo
Vit € [~0.5Tp, 0.5T0]]
1 /TO/Z
C ToJomy)2

Fundamental Frequency fo =

Cn

1
To
nth Harmonic £nfy For a real

signal:
o0
s(t) = CO‘i‘Z 2|en| cos(2mn fot+Zen)
n=1
vt € [0.5Tp,0.5Tp]
Fourier Transform

S(f) /_OO s(t)e 92 ftqy

Inverse Fourier Transform

s(t) = /jo S(f)e’?mftdf, vte R

3dB bandwidth

201og; o (M) < —3.01(dB)

IS(f)lmaz

Sinusoid Power
. 1
(Isin(t)[*)] = (| cos(t)[?) = 5

Average Power

(s2(t)) = % /_z S2(8)dt, T — oo

Random Noise
0.5No | f % fe| < B/2
Sn(f) =
0 otherwise
(),
N/bv N, W
2 Channels

Distortionless Channel
y(t) = ks(t — to)

Envelope/Group Delay
_ 1 dZH(fo)
27 df

Tg ‘=

s(t)e—jQﬂ'nfOtdt = C(nfg) E[Xn} — /‘oo

Phase/Carrier Delay
ZH(f)
2w fe
Ideal Equaliser
Heq(f) = ke 32/t ()~

Q(z) := 1 — ®(x),upper tail prob

Tp -

Jointly Gaussian RVs
Covariance matrix

K = E[(X — m)(X - m)
fa

fxi, xn (@1, 2n)

Tapped Delay Filter _exp(—0.5(x —m) K~ (z — m))

Heq(f) :d]winefj%'ran (27‘()"/2|det K‘I/Q

r e I2TIMA T (£)—1 Transformations of RVs

If Y = g(X) is differentiable and

2M
y(t) = Z dy—nz(t —nA) 1-1 then: .
e Fr(w) = fx @)/
~s(t— MA) It 7 = g(X,¥),W = h(X, )
A <05/W

where the mapping
(9,h) : R? = R? is 1-1 and

3 Probabilit
y differentiable then:

Bayes’ Rule
B P(XNY) fZ,W(va):fX,Yngy)/(s‘detJ(xvy)l
PX|Y)= —— 6—2 6—2
P(Y) J(@,y) = | §u  su
_ PV X)P(X) = 5y
P(Y) Central Limit Theorem

Expected Value
oo
BX] ::/ wofs(2)de
— 00

Sn = iXi
S

ZN
N o\/n

Moment order n

z" fz(x)dx nli>moo Plzy <4
— o0 1 z 2
= — —x°/2)d
Variance \/ﬂ/_weXp( 2"/2)da

ok = Bl(X —mx)?]
= E[X?] - E[X]?

Characteristic Function

Essentially a Fourier transform
Uy (v) := Ele??X]
oo .
:/ IV X fx (z)dx
—oo
If XY independent
Uxyy(v) = ¥x (v) Ty (v)

Covariance
cov[X,Y]: = E[(X —mg)(Y — my)]
= E[XY] - E[X]E[Y]

Correlation

1 d"‘l’x(l))
EX" = ———2|,=

E[XY] XM= s —gn o=

Correlation Coefficient 3.1 Random Processes
_cov[X,Y] € [-1,1]

PX)Y = oxoy ) Wide-sense Stationarity

X e mx (t) constant for all time

Joint pmf

e Rx(s,t) = Rx(s —t) acf de-
Fxy(z,y):=P(X <2,Y <y) pends only on time difference
Joint pdf Autocorrelation Properties
52 Average Power Rx (0) = E[X (t)?]
fX,Y(x7y) = 7FX,Y('rzy) E R _ —
620 ven Rx (—7) = Rx(7)
Max at 0 |Rx(7)] < Rx(0)
Power Spectral Density (PSD)

Fx(z) = Fx,y (z,00)
fe@) = [ frr (i
v = [ [ pxrtodasx()= [ Rx@e
Properties:
Rx()i= [ Sx(pe® Iy

EIX()%] = [Z, Sx(f)df

(constant over t)

Sx(f) >0

For real-valued process

Conditional pdf
_ Ixv(zy)
fx(z)

Mutual Independence

fY|X(y|$) = fy(y)

Gaussian PDF

fyix (ylz)

1 (z —m)? Sx (f) = Sx(—f) White noise
Ix(@) = o2 exp(= 202 Sx (f) is constant in
>0,z €R

®(z) = cdf of N(0,1) Linear Systems with

Stationary Input

oo
my =mx h(T)dr =mxH
5 poo

Ry = [ [ hrn(r).
Rx(t—m71 —‘,—’Tg)d’rld’rg

Sy (f) = [H(HI*Sx (f)
i.e Output PSD only depends on

input PSD and system magnitude
response
Cross-correlation

Rxy(s,t) == E[X(s)Y ()] = Ry x (t,5)

Cross-covariance
Cxvy(s,t): = E[(X(s) —mx(s))
(Y (t) — my (¢))]
=Cyx(t,s)
Mutually uncorrelated:
Xcy(s,t) =0
Cross Spectral Density
Sxy (f) == F[Rxy(7)]

Bandpass Process

Real WSS random process is

e Lowpass: Sx(f) = OV|f|] >
W, for some W > 0

e Bandpass: Sx(f) = 0 for all
f outside [—(fo + W), —(fo —
W)&[fo — W, fo + W], for
some fo > W >0

Bandpass process:

X(t) = Xe(t) cos(2m fot) —Xs(t) sin(2m fot)
Xc(t), Xs(t) lowpass, jointly WSS
Xe(t) = X (t) cos(2m fot) +X (t) sin(27 fot)
Xs(t) = X (t) cos(2m fot)—X (t) sin(27 fot)
Properties:
Rx,(r) = Rx,(7)
= Rx (1) cos(27 foT)+Rx (7) sin(2w foT)
Sx.(f) = 8x,(f)
= Sx(f = fo) + Sx(f + fo)
for |f| < W

4 Trigonometry
. Jx —Jjx
cos(z) = Re(e?®) = erte
. jr _e—jx
sin(xz) = Re(e?®) = %
asin(f) + bcos(9) = Rsin(70 +ba)
R=+va?+b? «a=arctan(-)
sin(u £ v) = sinucosv £ cos usinv
cos(u £ v) = cosucosv Fsinusinv
sin(2u) = 2sinwucosu
cos(2u) = cos? u — sin? u
=2cos?u —1
=1-2sinu
1
sinusinv = —[cos(u—v)—cos(u+v)]
cosucosv = —[cos(u—v)+cos(utv)]

sinucosv = —[sin(u+v)+sin(u—v)]

cosusinv = 5 [sin(u4v)—sin(u—w)]
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5 Bandpass Signals and
Systems

Any Bandpass signal can be alternatively

written as
a(t) cos (2w fet + (1))
N————
0(t)
Vo) + s.(1)?
ss(t) )
sc(t)
Bandpass Narrowband

fo >> B,£0.5B of fo

s(t) =

a(t) =

p(t) = arctan(

Bandpass to Lowpass (frequency)
1. Suprress the negative frequencies
Z(f) = (1 +sgn(f)S(f)
2. Downshift the spectrum
SL(f) ==2(f + fo)
Lowpass to Bandpass (frequency)
1. Upshift
Z(f) = SL(f — fo)
2. Reflect around 0, conjugate, add to PE and

scale _
st = 2D+ 2D

Bandpass to Lowpass (time)

1. CE:
z(t) = s(t) + 75(¢)

2. Take IFT:

Si(t) = e~92Sotx(1)
2(t) = 2710t (1)

Lowpass to Bandpass (time)

s(t) = Re[z(t)] = Re[e?2™F0ts;(1)]

Bandpass Representation
2(t) = A(t)ej(an'ct+¢(t))

S| = S¢ + jSs

Re(z(t)) = s(t) = A(t) cos(2m fet + P(t))

= 5c(t) cos(2mfot) — ss(t) sin(2m fot)
—— ——

In phase Quad
se(t) = s(t) cos(2m fot) + 8(t) sin(2 fot)
ss(t) = —s(t) sin(2w fot) + 3(t) cos(2m fot)

Hilbert Transform
H(f)=—j Slgn(f)
h(t)

1 1:”7;0 ()
§::s*—:f/ STdT
i TSt —T

Common transform pairs

sin(t) <> — cos(t)
cos(t) < sin(t)

6 Double Side Band
Suppressed Carrier (DSB-SC)

e Difficult to create an in phase local oscilla-
tor for demodulation
e Difficult to create an ideal mixer
s(t) = m(t)Ac cos(2m fct)
S(f) =05AM(f)+0.25AM(f — fe)
+0.25Ac M (f + fe)

Quadrature Carrier Multiplexing
Use a complex envelope to contain 2 real LP

signals.

s(t) = Re{z(t)} = sc(t) cos(2m fet)—ss(t) sin(2m fet)

sc(t) = Aema (t)
ss(t) = Acma(t)

Synchronous Demodulation
Multiply by cos(27 fct + ¢) where ¢ represents
the phase offset due to an imperfect local

oscillator.
v(t) = Aem(t) cos(2m fet)?
= 0.5Acm(t) cos(¢)
If ¢ = £7/2, Quadrature Null Effect causes

severe attenuation.

DSB-SC Power

Ppspsc = 0.5A2Pn,

6.1 DSB-SC Noise
Performance
Received signal
S(t) = AcM(t) cos(2m fet) + N(t)
= (AcM(t) + Ne(t)) cos(2m fet)
— Nu(t)sin(27 fot)
Sdem (t) = 0.5Ac M(t) + 0.5N.(t)
N! is LPFed in phase noise
Pgem = 0.25A2E[M (t)%] 4+ 0.25E[N.(t)%]
= 0.25A2E[M(t)?] + 0.5NoW

Signal to noise ratio
S (S _ AEPM
(N)o - (N)b T 2NgW
7 Amplitude Modulation
(AM)

e Uses more power than DSB-SC

e Eliminates phase reversals
Im(t)] < M
s(t) = Ac(1 4+ pm(t)) cos(2 fet)
S(f) =0.5Ac((f — fe) + uM(f — fc))
+0.5Ac(6(f + fo) + pM(f + fe))
AM Demodulation
Use a notch filter to remove DC offset.
Will be dangerous to perform this on signals

with low frequency components due to the
notch filter.

AM Power
Panr = 0.54%2 +0.5u2A42P,,

7.1 AM Noise Performance
Received signal
S(t) + Ac(1 + pM (1)) cos(2m fet) + N(t)
Demodulated output (envelope detector)
Y (1) = \/[Ac(U+ uM (1)) + Ne(D]? + Na(1)?]
~ Ac(l 4 pM(t)) + Ne(t)

Notch filter to remove DC

Y/(t) = pAcM(t) + Ne(t)

Signal to noise ratio

S S }LQPM
(3)./(3),= T <!
N/o N/b 1+ W PM
Normalised Message
(E) . B2 Py P
N o 1 + /J,QPJWN NOW

AM Threshold Effect

o If NgW >> A2 there is no meaningful
SNR.

e Output SNR decreases linearly with power
until A2 is around NoW at which signal

quality suddenly decreases rapidly to zero

8 Single Side-Band (SSB)

e If the channel is LP with BW B Hz then
there is no issue

e In a bandpass channel, after modulation
the negative side-band uses valuable posi-
tive channel bandwidth

e Not suitable for low frequencies

Suppress negative sideband:

y 2M f>0
N(f) := (1+sgn(f))M(f) = { ) . f>
0 ,f<0
m(t) = m(t) + ](% * m(t)) — m(t) + j(t)
Spectrum:
Sssp(f) = 05AM(f — fe) + 0.5AM(—f — fo)*
ACM(f—fC) F> fe
=CAMf+fe) f<—fe
0 elsewhere

Hilbert Implementation(USB)
sssp(t) = Acm(t) cos(2m fet) — Acmn(t) sin(2m fet)
= Re[m(t)Acel2mFet]

BPF Implementation (USB)
1. Generate DSB-SC Signal
Spspsc(f) = AcM(f —fo) +AcM(f+ fe)
2. Pass through BPF with the passband
[fe; fe + BBPF]

Demodulation using Hilbert Transformer
Difficult to design a Hilbert transformer with

sharp phase transition

sc(t) = s(t) cos(2m fet)+3(t) sin(2w fet) = Acm(t)

Demodulation using LPF
Difficult to design a LPF with sharp magnitude
transition.
1. Mix with carrier frequency
v(t) = s(t) cos(2m fet)
= 0.5A:.m(t)
+ 0.5Acm(t) cos(4m fet) — 0.5Acm(t) sin(4mw fet)

SSB Signal at 2f.Hz
2. LPF with W < Brpr < 2fc
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Using a local oscillator out of phase by a
moderate ¢ is acceptable for telephony but not
music/video with low frequency content

Myec(t) = 0.5Ac(cos(d)m(t) + sin(p)mn(t)

—IP M >0
Myeo(f) = 054, 4¢ MG T
P M(f) f<o
SSB Power
Psgp = A2Pm

Frequency Division Multiplexing

e Allows multiple messages on the same
channel

e Put different bands of SSB modulation on
the same carrier

e Crosstalk can be reduced with a guard
band and using a low pass filter

e Use a bandpass filter for demodulation

8.1 SSB Noise Performance

Received signal

S(t) = AcM(t) cos(27 fet)— Ae M (t) sin(27 fet)+N (t)

Demodulated output
Y(t) =0.5A:M(t) + 0.5Nc(t)
Noise power
Py, = NoW

Signal to noise ratio
(S) _AZPy PR
N/o  NoW =~ NoW

9 Vestigial Side Band (VSB)

e Compromise between SSB and DSB-SC

e Partially suppress most of lower (or upper)
sidebangs except a vestige

e For demodulation via envelope detection 8

cannot be tpo small
2 fe+BSfSfetW

Hysp(f) =
0 0<f<fe—8
for jw| <W
Hysp(fe +w) + Hysp(fe —w) =2
Cases:
SSB: 28~ 0

DSB-SC: g >> W, with two sidebands and no
quadrature component
Demodulation using local oscillator /LPF

1. Mix with local oscillator
2. BPF (fm > W) or will overlap!

Sdem (f) < [Svsp(f + fe) + Svsp(f — f)lHLpr(f)
o [Hysp(f + feo) + Hysa(f — f)IM(f)

= 2M(f)

Demodulation using envelope detection
Can be combined with AM: VSB + C

s(t) = Ac(14+pm(t)) cos(2mfot)— Acpry(t) sin(QWfCl%ﬁllike AM the quadrature carrier is modulated
v spm(t) = Accos(2m fet)—0.5Ac8 cos(2m(fe—W)t)

Quad Comp
.. Envelope o Ac\/(l +0.5um(t))2 + (uy(t))2

For a small p:

Envelope « 1 + pm(t)

Transition Bandwidth Selection

e When transition bandwidth 28 ~ 0, VSB
resembles SSB

e When 5 >> W, VSB filter looks like ideal
BPF centered at the carrier frequency and
hence the signal is approximately a DSB-
SC signal.

e For envelope detection B should not too

small

10 Angle Modulation

Only the angle contains message information

s(t) = Accos(0(t)) = Ac cos(2m fet + ¢(t))

10.1 Phase Modulation (PM)

Phase of carrier is modulated in proportion to
message
o(t) = kpm(t)
spam(t) = Ac cos(2m fet + kpm(t))
kp: Phase Sensitivity
Phase modulation index/Maximum Phase

Deviation

6 = max| ()| = ky max |m(?)|

11 Frequency Modulation
(FM)

t
spap(t) = Accos(2m fet + 2wk s / m(7)dr)
m(r) = 0,¥r <0
(t) = 27rk:f/ m(r)dr
0
Instantaneous Frequency:

1 do

(1) = —— = k t
1t = 55 = fe+kym(®)
Maximum Frequency Deviation

Af = kfm?x|m(t)|

Single Tone Analysis
m(t) = Am cos(2rnWt)

Frequency Modulation Index
5= Af _ k¢ max(m(t))
w w
Time domain signal
SF]M(t) — Re{AcejQTrkf 5 m(‘r)d7'+j27rfct}
= Ac cos(Bsin(2rWt)) cos(27 fct)

— Acsin(Bsin(2rWt)) sin(27 fet)

Narrow-Band FM

In the case where:

A kA
g _kdm
cosr~1 snzr=xl

The magnitude spectrum looks like AM, but

+0.5A:8 cos(2m(fe + W)t)

Wide Band Single Tone FM
Unlike in narrow band, 3 is not small and

cannot make assumption

spar(t) = Re{Aqef2mfet+ot))y

=Ac D> Jn(B)cos(@n(fe +nW)t)

n=-—oo

Bessel Function
Ifg<<1

Jo(B) = 1,J1(8) = B, Jn(B) << B

FM Power

Independent of message

Prar = 0.5A2

Carson’s Rule
Estimation of the required FM bandwidth,
works well for 8 >> 1 and 8 << 1.
Underestimates in range closer to 3

Bcarson = 2(1 + ﬁ)W = 2(W + Af)

Direct FM Generation

e At high frequency, use a voltage-controller
oscillator (VCO).

e At low frequency, use a parallel resonant
circuit by modulating the capacitance of

the circuit. At the resonant frequency

Indirect FM Generation

Major disadvantage is drifting carrier frequency

1. Generate narrow-band FM with stable freq
using standard linear modulation tech-
niques

2. Frequency multiplication to generate wide-

band FM using a non-linear device
Non-linearities in FM

e Strong: when non-linearity is inserted in-
tentionally

e Weak: when non-linearity arises whenever
signal levels become too large. FM is im-

pervious to weak non-linearities

11.1 Frequency Demodulation

Deviation ratio
Strength of the demodulated signal increases
with deviation ratio.

D = Af/W(= B if single tone)

FM Power
P = 0.5A42

11.1.1 FM-AM Demodulation

Using differentiator

dspp(t)

o = Ac(2n fe + 2wk m(t))-

sin(27 fet + 2wk /t m(7)dr)
dspm ()

F{T]\:(t} = j2nfSrm(f)

Slope Circuit
The differentiator amplitude response at the
carrier frequency is too large so a slope circuit
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is needed.
i2na(f — fe+C) |f — fe| <B/2
H(f) = H(-f)" |f + fel < B/2
0 otherwise

Output of demodulator:

t
y(t) = —2maAc(C+kym(t)) sin(27r[fct+kf/o m(7)dr]

o C > kymaxi|m(t)| = Af for enveloped de-
tection, common choice is C = B/2
e Demodulated signal amplitude o< k¢
Limiter
e Limits FM signal with constant amplitude
e Used to avoid distorted message due to am-
plitude distortion in slope circuit of PLL

demodulation.
vo(t) = A sgn(v;(t))

t
= Alci cos(2r[fet + ky / m(7)dr])

FM signal with constant amplitude

11.1.2 Zero Crossings Detector
Demodulation

fe+kym(t) = no. zero Croszi;gs in interval

1. Limit FM signal (easier to detect zeros)

2. Apply pulse-detector pulses for each posi-
tive/negative transition

3. Continuously integrate over interval T. The
integral is proportional to the number of

pulses in T.

11.1.3 Feedback Frequency

Demodulation

Phase locked loop
VCO with frequency sensitivity k., and free

running frequency fu

t
v(t) = —sin (27 fot + 27|'k11/0 y(7)dT)

—:0, ()
Multiply received FM signal with VCO output

z(t) = —Ac cos(0c(t)) sin(fy (¢))

- o.5Ac(sin(ec(t) — 0y(t)) — sin(Be(t) + 0, (t)))

low difference freq high sum freq
1. Pass through LPF to suppress the high fre-
quency term.
2. Amplify phase detector output by a factor
K,
3. Feed back into VCO to keep angle differ-
ence between VCO and FM small
€:=0c(t) — 0,(1)
Well designed PLL keeps angle difference small
so can approximate linearly
é(t) = 2m(fe— fot+kpm(t) —ky0.5 Ko Ac sin(e(t)))

c — Jv k t
() ~ 0.5Kq Ace(t) ~ %fm()
Ensure f. — fo, Af << 0.5k, KqAc

11.2 FM Noise Performance

e Output SNR increases with D at cost of in-
creased transmission BW B = 2(D + 1)W

e Output SNR increases with A. quadrat-
ically, increasing carrier amplitude de-
creases output noise power

e Dynamic range compression on message in-

creases W improving output SNR
Received signal
) R(t) = A cos(2nfe(t) + () + N(©)

Noise decomposition
N (t) = Ne(t) cos(2m fet) — Ng(t) sin(2m fet)
= Vi (t) cos(2m fet + pn (1))

After Limiter and BPF

S(t) = Acos(2m fet + ¢(t) + LG(t))
Glt) =1+ t) Valt) jon0-6(0)

Demodulator output
dZG(t)
dt
ZG(t) has a nonlinear dependence on message

Y (t) = 2mk; M(t) +

and is difficult to analyse

Large Carrier Approximation

Assume
E[Va(t)%] = 2NoB << A2
sG(t) ~ el cos(@ ())A— (1) sin(6(1))

Wideband Approximation
If W << B/2 then for all |7| < 1/W

R,c(7) = Ry, (1) /A2

Output Noise PSD

@rf)? 38 Ifl<w
Sz (f) =
0 |fl >W
_ 8m2NoW3
77 T 3a2

Signal to noise ratio
S 3A2K2 Pys
<N>o T 2N
_ 3D2Py, (E)
max¢ |m(t)|? b

Maximum Deviation Ratio

20(D + 1) < 10(5/N)e/10

Clicks

o If NgB << 0.5A2 is not satisfied, sig-
nificant probability that noise envelope
Va(t) > Ac.

e Small variations in-phase and quadrature
noise will occasionally lead to large phase
changes of £27

e Demodulator differentiates large phase

changes yielding impulse like effects heard

as clicks

Threshold Effect
To avoid falling below SNR threshold

)=,
<N>o max¢ |T:LJ(t)\2D2(1+D) = <N>o,th

FM Parameter Check

(5), - it > (2)
N/o o max¢ |m(t)|2 N()W ~ \N/o,desired
T

20(D +1) <
0
2W(D + 1) < Bavail

Pre-emphasis/De-emphasis
e High frequencies won’t sound as clean due
to quadratic FM output noise PSD
e Put message through highpass filter before
modulation to emphasis high frequency
components
e Pass demodulated signal through lowpass

filter to attenuate noise at high frequencies
Hq(f) =
1+35f/fo
H(f) =1/Ha(f) =1+ jf/fo
New output noise PSD

2N0 f2
Szpalf) =4m A2 1+ (f/f2

Pz pq =87 QNIZ;CO <% — arctan (fo ))
Ratio of new SNR to old
S Sy 1 (W/fo)?
<N)o,pd <N)o ~3 (W/fo — arct(;n(W/fo))

12 Digital Communications

Pulse Amplitude Modulation

s(t) =

(oo}

Z dnp(t —nT)

n=—oo
dpn, Amplitude of pulse
T Sampling period
p(t) Signalling waveform (pulse)
Ideal Sampler
Outputs a modulated sequence of impulses

Telta(t) = Z x(nTs)6(t — nTs)
Kietta(f) = Ti > X(f- Tﬁ)

Impulse Train Fourier Series

e oo
Z 5(t — mTy) = Z cned27nt/Ts

m=—00 n=—oo
1
Cn = —
"
12.1 Quantisation

Quantisation Quality

Measured by mean square error (MSE)

D =E[(X - Q(X))’]

Signal to quantisation noise ratio
E[X?]
E[(X - Q(X))?]

Uniform Quantisation

SQNR :=

If X Ula,b), minimise D by partitioning [a, b)
into N intervals of equal length
N = 2”
b=a
A=

z
Bl(X Q) = T =
Optimal SQNR = N2

I
§
o

o]
S
:3
o+
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For nonuniform X, for N >> 1 still have
A?  E[X?]

12~ N2

given P[X < aU X > b] is comparatively small

E[(X - Q(X))*] =~

Companding Quantisation
Using a uniform quantiser to generate

non-uniform quantisation

& =9 (Qulyg(x)))

Where g(x) is a compressor, g~ (z) is an

expander.
p-Law
In(1 + pl|x
o) = ) sn(o)
A-Law
9(@) = ﬁgéx\z\) oo
msgn(z) |z| > 1/A

12.2 Waveform Coding

Pulse Code Modulation

1. Pass cont. time signal through anti aliasing
LPF

. Sample and hold at sampling rate > 2W

Quantise each sample

Encode each N = 27 level as v-bit word

S SN

. Convert to serial bit stream, bit rate r =
1/Ty

6. Generate regular signalling pulses once ev-

ery T's and use bit stream to modulate their

amplitudes
Differential PCM

e For a fixed number of quantisation levels
N, quantisation noise power increases with
variance of signal

e Oversample signal at fs > 2W, successive
samples highly correlated and have little
variance

e Store last quantised estimate X ((k—1)T5)
in a delay buffer and quantise X (kTs) —

X ((k —1)Ts) for higher resolution
At Transmitter

1. At time k find Y}, = QX — Xk—l) where
X_l =mx

2. Encode Y}, into bits and transmit using
PCM

3. Update signal estimate Xk = Xk_l + f/k

At Receiver

1. Demodulate received PCM signal to get }Afk
2. Update signal estimate via Xk = )A(k,l +
Yfk where X,l =My

Delta Modulation

e Extreme case of DPCM where a 1-bit quan-
tiser is used Y}, = £A

e Useful when can sample much faster than
Nyquist

e Multi level A/D conversion can be slow so

this method can be effective instead

e If A too large, slow input changes will os-
cillate

e If A too small, delta modulator can’t keep
pace with fast input changes and gives sus-
tained under/over shoot

e Adaptive AM: increase A if the last few
Y}, have had the same sign. E.g.

Ap = Ag_q(1.5)%80 Tk Ye-1)
12.3 Detecting Binary PCM
e Above PCM threshold,

power does not improve SNR

extra transmit

e SNR gain to bandwidth increase is expo-
nential relationship

e Analog modulation is a better option than
high v PCM if enough baseband SNR is
available

e Can use error control coding to achieve op-
timal performance

Assume channel bandwidth sufficient for pulse

and only adds uncorrelated white noise

R(t) = dp(t) + N(H),0 < t < T}

Noise Limiting Filter
e Pass received signal through non-ideal fil-
ter H(f) to limit noise power
y(t) = d(h xp)(t) + (h* N)(8),0 <t <T
e Distortion of pulse from the filter is fine,
as long as at the decision instant t' >
0, |(h % p)(t')] is large compared to filtered
noise (h * N)(t')
Optimal Detection Filter
Desired condition for low probability of
misdetection
ld(h * p)(t')|* << var[(h* N)(t')],d #0
Find h(t) to maximise ratio at decision instant
d?|(h * p)(¢)|?
E[|h* N)(¢)|?]
Matched Filter
Find H(f) to maximise
| 25 H(DHP(f)e> I df?
a JZo JH () 2df
[e o]
e = [ IPUIPA
— ;
Hopi(f) = e™ 72" P(f)*
hopt (t) = p(t’ —t)
Noise PSD at output

E[|(h  N)(t')[?] = 0.5N [ T H() Pdf

Optimal Output Detection SNR
It can be seen the energy of p(t) is important,
not its peak value
S 2d2E),
(N) - T No

Statistical Properties of Matched Filter
Output

Mean

Ty
By (@)l = [ dp(tyie = dr

Variance

var[Y (Ty)|d] = 0.5No E)p

Probability of Error
If ’0’ transmitted

V —doE)p
o = (L=
If ’1’ transmitted
V—-di1F
o =1 hEn)
Oz

Average probability of error

Pe = PoQ(V%iOEp> +p1 (1—Q<m)>

Oz

Optimal threshold
For equally likely bits po = p1 = 0.5

_ (do+d1)Ep
Yopt = 5

pe = Q((dr —do)y [ 32)

Error Probability vs Average Power

Average energy per bit
P Ty := Ej
Unipolar: P, = 0.5A2E, /T,

e

Polar: P, = 0.25A%E,/T,

r=o( [ 0)

Polar signalling has better performance for

given power

Natural Binary Coding
If a natural binary format is used and
(S/N)p >>v(>>1)

Output noise power

~ |x|$naz 4|x|$nazp€
~ —_— + _—

4v3 3
—_——

From Quantisation Noise From Channel Noise

3(Px /|#[Fan

S
(N)oz4v+4Q(\/W)

If (S/N)p >> v? quantisation noise dominates

13 Inter-Symbol Interference

Given a distorting channel H(f) which also
adds Gaussian white noise
p(t) := (p* hxm)(2)
Z(t) == (h*m = N)(t)
Filter output given by
oo
Y(t) = dnp(t —nTy) + Z(t)
n=0
If we want to recover di_1 transmitted during
previous bit period, the output of the filter is

Y (kTy) = dpap(Tp)+ > dup((k—n)Tp)
— nin#k—1
Desired

#0—ISI
+ Z(kT})
——
Noise
Can mitigate using Pulse Shaping or

FEqualisation
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Table of Continuous-time Frequency Fourier Transform Pairs

Ft) =FHF(f)} = [T f(t)ed?mItdf

F(fy=F{f@t)} = fj;j’ F(t)e—i2ftqy

transform
time reversal
complex conjugation

reversed conjugation

I
f(=1)
()
(=t

f(t) is purely real

f(t) is purely imaginary

F(f)

F(-f) frequency reversal
F*(=f) reversed conjugation
F*(f) complex conjugation
F(f)=F*(=f) even/symmetry
F(f)=—-F*(—f) odd/antisymmetry
F(f) is purely real

F(f) is purely imaginary

even/symmetry ft)=r*(-t)
odd/antisymmetry ft) =—f*(-t)
time shifting f(t—to)

F(t)er2sat
time scaling f(af)

f (4)

F(f)e=7>mft0

F(f - fo) frequency shifting
1 I

arF (£)

F(af) frequency scaling

linearity

af(t) + bg(t)

aF(f) +bG(t)

time multiplication F)g(®) F(f)«G(f) frequency convolution
frequency convolution @) *g(t) F(HG() frequency multiplication
delta function a(t) 1
shifted delta function 5(t — to) e—Ji2nfto
1 o(f) delta function
ed2m fot o(f — fo) shifted delta function
. . —alt 2a
two-sided exponential decay ealtl ¢>0 Py
e—wt2 e—ﬂ'fz
pimt? I (—1%)
sine sin (27 fot + ¢) 5 [e79%6(f + fo) — 7?6 (f = fo)]
cosine cos (27 fot + @) % [e796 (f + fo) + €795 (f — fo)]
sine modulation F(t) sin (27 fot) LIF (f + fo) = F (f — fo)]
cosine modulation f(t) cos (27 fot) % (F'(f+ fo) + F (f — fo)]
squared sine sin? (t) % [26(f) =6 (f— %) —6(f+%)]
squared cosine cos? (t) % [25(f)+6(f - %) +6(f+%)]
1 <L )
rectangular rect (L) = 2 TsincT
& () {0 [t > % !
[£]
. . 1-42 ¢ <T
triangular triang (&) = T = Tsinc? T
& g(r) {o It >T !
B 1 tzo0 1
step u(t) = 1o, 100) () = {0 t<0 727 T ()
. 1 t>0 L
t) = 1
signum sgn (t) {71 t<0 7
sinc sinc (Bt) L rect <i> =11 5 _ 5.
B B B [-Z . +8]
squared sinc sinc? (Bt) % triang (%)
n-th time derivative 4T () (j2r )" F(f)
n-th frequency derivative t"f(t) W :f—tF(f)
L re—27lf

1+¢2




